随着3D打印(增材制造)技术的高度灵活性和不断创新,其在改变着传统的制造业的面貌。尤其是其可快速的prototyping、可减少对原材料的浪费等优势,越来越受到广大企业的青睐。随着3D打印技术的不断突破和 mature...
2025年5月,科罗拉多州立大学和亚利桑那州立大学的研究人员成功开发出一种革命性的增材制造方法,可快速制造高性能碳纤维增强热固性复合材料。这项发表在 Nature Communications期刊上的研究,展示了通过原位光热转换实现即时固化...
当前,人类在生产大规模生物制造器官时,面临血管化和灌注不足的重大挑战,尤其是为任意复杂几何形状设计和打印能满足充分灌注的血管网络极为困难。现有方法如晶格设计难以复现天然血管拓扑和血流动力学,无法满足临床相关细胞密度的代谢需求,...
导读:体积光固化3D打印技术,虽然商业化应用方面还处于早期,但是近两年不断冒出新的突破性的技术成果。 2025年7月18日,洛桑联邦理工学院 (EPFL)和乌普萨拉大学的研究人员开发出一种新的光固化技术,能够通过体积...
2025年7月18日,德克萨斯大学阿灵顿分校(UTA)的一位生物工程教授正在开发一种旨在促进心肌再生的 3D 打印贴片。项目旨在为心脏病发作幸存者提供一种潜在的新治疗方案,以应对一项关键的医疗挑战。心脏病发作幸存者受损的心脏...
航空航天是当今世界科技强国竞相发展的重点方向之一,其发展离不开兼具轻量化、难加工、高性能等特征的金属构件。激光增材制造为高性能金属构件的设计与制造开辟了新的工艺途径,可解决航空航天等领域发展过程中对材料、结构、工艺、性能及应用等...
随着航空航天、半导体、核能等高精尖领域的迅猛发展,对材料性能的要求日益严苛,耐高温、耐腐蚀、高刚性与高强度已成为关键性能指标。作为复杂陶瓷部件制造的核心手段,增材制造(AM)技术正受到研究人员和工业界的高度关注。然而,当前的...
2025年7月17日,荷兰格罗宁根大学的研究人员开发了一种低成本、可扩展的方法,利用3D打印模型、振动分析和机器学习来检测风机叶片的故障。该研究通过使用PLA材料制作的NREL 5MW叶片的缩放复制品,成功模拟了各种损坏场景。△...
2025年7月17日,来自爱尔兰皇家加拿大医学与健康科学大学(RCSI)的一个研究小组开发了一种 3D 打印植入物,可以向脊髓受伤部位传递电刺激,为修复神经损伤提供了一种潜在的新途径。有关 3D 打印植入物的详细信息以题为“...
导读:从俄乌战争的一些视频当中,我们看到无人机发挥了越来越大的作用。要想快速的制造无人机,可以使用3D打印技术来实现。 2025年7月16日,专注于“箱式工厂”无人机制造模式的初创企业 Firestorm Labs(风暴实验室...