热门标签-网站地图-注册-登陆-手机版-投稿 3D打印网,中国3D打印行业门户网!
当前位置:主页 > 新闻频道 > 行业政策 > 正文

3D打印在新能源汽车制造领域的发展与趋势(2)

时间:2022-07-06 12:57 来源:3D科学谷 作者:admin 阅读:

block 颠覆性创新潜力

l 电动机

新能源汽车领域,尤其值得重视的是3D打印技术在电动机领域的应用潜力。

根据中国机电产品进出口商会研究可知,尽管2021年的全球疫情导致了国际海运、原材料价格大幅波动,以及电力供应紧张等多重困难,但我国电动机行业以完整的供应链、庞大产能、效率与价格优势,仍展现出较强的行业韧性与活力,电动机产品出口总额突破200亿美元,创历年新高,取得骄人的成绩。

在全球“净零”目标下,电动机行业朝节能减排、绿色方向发展将是必由之路。2021年,工信部、市场监管总局联合发布《电机能效提升计划(2021—2023年)》,明确提出到2023年高效节能电动机产量达到1.7亿kW,在役高效节能电动机占比达到20%以上。扩大高效节能电动机绿色供给、拓展高效节能电动机产业链、加快高效节能电动机推广应用,以及推进电动机系统智能化、数字化提升,将是“十四五”时期重点工作,其中电动机能效提升将是大势所趋。2021年,我国电动机产品出口最主要的品类依然为中小型电动机,同时大电动机、微电动机、发电机组等出口额同比均实现两位数增长。

无论是在工业领域还是交通领域,未来的驱动任务都对各个组件提出了很高的要求。一方面基于传统的制造工艺,优化的几何形状通常是不可能的,结果是设计者只能在性能和效率上痛苦折衷,某种意义上电动机的经典制造工艺已经达到了极限。另一方面,随着增材制造技术日趋成熟,尽管目前与传统生产方法相比速度较慢且可靠性较低,但增材制造系统在生产具有非常规拓扑优化(TO-Topology Optimization) 结构或小批量零件时会大放异彩,这为电动机的制造开辟了另外一条曲径通幽之路。

新能源汽车所用电动机包括直流电动机、感应电动机、永磁同步电动机及开关磁阻电动机等。当前,永磁同步电动机系统正在成为新能源汽车的电动机主流,这类电动机具有高功率密度、宽调速范围等优势,未来新能源汽车驱动用电动机系统正朝着永磁化、数字化和集成化的方向发展。

当前,世界上的电动机研发团队已将大量精力转移到将增材制造系统集成于电动机生产周期中,以实施更强大、更高效地拓扑优化下一代电动机。根据3D科学谷的市场研究结果,3D打印电动机似乎只是时间问题。预测在未来几年内,原型拓扑优化电动机组件的3D打印将急剧增加,最有可能集中在3D打印电动机绕组、热交换器和同步转子上。

Valley_Motor_Copper© 3D科学谷白皮书

与3D打印电动机绕组相比,当前增材制造永磁体的技术还处于不成熟阶段,主要的局限性体现在功率密度低且磁化能力有限。目前,3D打印软磁钢的技术成熟度介于前两者之间,一方面表现出与传统无取向钢相当的直流磁性;另一方面,在交流应用中存在高涡流损耗。

到目前为止,3D打印的永磁样品表现出相对较高的矫顽力:在大多数研究中达到 700~800kJ/m。这可归因于增材制造材料固有的有限颗粒结构和高结构杂质含量。除了NdFeB,其他硬磁化合物的3D打印不太常见,包括 ALNiCo、SmCo和铁氧体磁体的一些实例[6]。

3D打印永磁样品存在以下两方面的技术挑战。

1)广泛采用的基于挤压的增材制造方法为实现复杂零件几何形状提供了较少的机会。这是由于3D打印后烧结过程中存在的显著收缩和机械不稳定性。

2)在打印复杂形状的永磁体同时,还必须设计一种磁化过程,以便在材料上赋予必要的三维磁化图案。在理想情况下,这个过程将在3D打印中原位进行,但由于涉及到强磁场,所以会遇到无数的技术挑战。

新材料的开发及其通过下一代生产方法进行的工业集成对电动机的整体性能产生了最显著的影响。当前的材料表现出有限的电磁特性,磁性材料的饱和磁通密度和绕组材料的电导率在过去一个世纪中一直保持不变,有幸的是,在新型3D打印技术中已经提出了电动机发展停滞的可能解决方案。增材制造可以从一个新的角度创造新的电动机设计思路,尤其是将拓扑优化应用到电动机的零部件设计上。

增材制造将在电动机的设计中引入了全新的设计规则,因为增材制造的成本与批量大小以及产品设计的复杂性并不相关,这意味着电动机的电磁和热优化有更多机会,因为磁通路径和导体可以根据设计要求进行三维形状构建,并且设计中集成了更有效的无源或有源热交换器。

值得注意的是,除了直接采取3D打印技术来制造电动机零部件,还可以采取3D打印铸造模具+铸造的方式来发挥3D打印成就更复杂设计的价值,3D砂型打印的优点是能够设计高度复杂的零件,而无需从头准备昂贵的模具。另外,随着增材制造提供了独特设计的可能性,全新的设计应运而生。而对于3D打印砂型的应用来说,增材制造允许最终用户在制造生产模具之前彻底检查并广泛测试新设计的组件,这样可以节省大量的前期开模时间和费用。

3D 打印电动机的主要挑战与3D打印设备系统的应用限制和生产电动机的技术要求有关。3D打印的电动机零部件必须满足严格的公差要求,涉及电动机的材料是用于绕组的导电抗磁材料、软铁磁材料等。

对于电动机领域的增材制造导电材料,首选的研究材料是高纯度铜。此外,一些铝合金(主要是 AlSi10Mg)和铜合金(CuCrZr、CuNiSi、Cu10Zn、CuCr、CuSn0.3)也被应用于研究中,但是合金的代价是导电率稍低。

钕基合金是研究最多的3D打印硬磁材料,其中NdFeB 基永磁合金 (PM) 备受关注,这可能是由于其高磁晶各向异性和镧系元素原子(例如 Sm、Nd)的异常高磁矩,这意味着即使在磁体中硬磁相的填充因子相对较低的情况下,也可以实现更高的功率密度。当然还有其他常见的硬磁材料,包括3D打印AlNiCo 和 SmCo 等。

推动3D打印用于新电力驱动的前沿研究正在形成多个发展趋势:第一种趋势的代表案例是福特携手亚琛工业大学开发灵活而可持续的3D打印电动机零部件,其聚焦点是铜金属;第二种趋势的代表案例是Fraunhofer IFAM或者是exone通过更为经济的打印方式所实现的新型电动机零部件的生产,其聚焦点是丝网打印或粘结剂喷射金属3D打印;第三种趋势的代表案例是英国制造技术中心MTC所致力的完全3D打印的电动机,其聚焦点是产品重新设计;第四种趋势的代表案例是保时捷与GKN所合作的Connactive 项目,其聚焦点是新材料与新设计的结合。

对于电磁材料的增材制造,4种类型的3D打印系统使用最多,包括粉末床熔化金属3D打印系统(电子束EB-PBF 和激光L-PBF熔化)、粘结剂喷射金属3D打印、定向能量沉积 (DED) 金属3D打印和各种类似的基于挤出的方法,最常见的是熔融沉积建模(FDM)。

越来越可靠的绝缘材料、更有效的电导体和磁导体、新的永磁合金以及具有成本效益的制造和加工方法,这些因素的配合使最终消费者可以获得更强大和更复杂的电动机设计。

如果说电动机对于新能源汽车的重要性相当于发动机对于燃油车的重要性,那么电池对新能源汽车的重要性则相当于汽油。无疑,另一个值得关注的3D打印在新能源汽车制造领域的应用是3D打印电池。

l  电池

近期内3D 打印电池的进步表明,未来可能会出现更便宜、能量密度更高的电池,这些电池可以根据应用和形状进行定制。

3D打印电池的想法并不是全新的,实际上是由哈佛大学 Jennifer A. Lewis 领导的团队于 2013 年提出的。他们创造了一个定制的打印机和特殊的阳极和阴极墨水来生产锂离子电池,但它只有一粒砂子那么大。

3D打印电池技术发展至今,不仅在“大局”上有不同之处,在最小的微米和纳米级别上也有所不同。在纳米级别,3D打印技术对电池电极的结构产生了很大影响,这就是能量密度增加的原因。长期以来,“多孔”电极可以提高能量密度,而增材制造非常适合该工艺,这意味着电极中的材料可以构建成三维点阵晶格结构。

晶格结构可以为材料内部的电解质有效传输提供通道,就锂离子电池而言,具有多孔结构的电极可以带来更高的充电容量,这种结构允许锂穿透电极体积,导致非常高的电极利用率,从而具有更高的能量存储容量。在普通电池中,总电极体积的30%~50%未被利用,通过使用 3D 打印克服了这个问题。此外,通过创建微晶格电极结构,允许锂通过整个电极有效传输,这也提高了电池充电率。点阵晶格意味着电极有更多的暴露表面积,从而带来更高效的电池。

目前,市场上黑石技术的3D打印工艺具有明显的优势,包括显著降低成本,提高电池尺寸的生产灵活性,以及使能量密度提高20%。3D打印使得电池架构可以实现复杂几何形状,这是朝着电化学能量存储的几何优化配置迈出的重要一步。研究人员估计,这项技术将在两三年内实现工业应用。

block 结束语

总体来说,3D打印将为汽车的结构件、电动机、电池制造等方面带来一定程度的改变。3D打印技术进入到产业化领域的局限性包括速度、成形尺寸、成本、质量一致性等。未来,3D打印技术的发展将突破当前局限,迈向更高的速度、更好的过程控制,以及更适合的材料应用。随着3D打印技术的快速发展,其为新能源汽车制造带来的改变将更加令人耳目一新。

参考文献:
[1] 3D科学谷.洞见3D打印未来发展关键要素,增材制造如何对制造产生深远影响?[EB/OL].(2022-05-08).http://www.3dsciencevalley.com/?p=26985.

[2] 3D科学谷.陶瓷、复合材料,深度透视粘结剂喷射3D打印技术的材料与应用发展. [EB/OL].(2021-12-27).http://www.3dsciencevalley.com/?p=25351.

[3] 3D科学谷.深度透视金属粘结剂喷射金属3D打印材料与应用发展[EB/OL].(2021-12-21).http://www.3dsciencevalley.com/?p=25277.

[4] HP.Volkswagen Hits Key Milestone in Journey to Mass Production with HP Metal Jet[EB/OL].(2019-11-06).https://press.hp.com/us/en/press-releases/2019/volkswagen-hits-key-milestone-in-journey-to-mass-production-with-hp-metal-jet.html.

[5] GKN.BMBF RESEARCH PROJECT IDAM: NETWORK PUTS METALLIC 3D PRINTING ON TRACK FOR AUTOMOTIVE SERIES PRODUCTION[EB/OL].(2019-04-17)https://www.gknpm.com/en/news-and-media/news-releases/2019/bmbf-research-project-idam-network-puts-metallic-3d-printing-on-track-for-automotive-series-production/.

[6] HANS T,et al.State of the art of additively manufactured electromagnetic materials for topology optimized electrical machines[J].Additive Manufacturing,2022,55:102778.

(责任编辑:admin)

weixin
评论
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片