一文解读铝合金增材制造技术
时间:2023-08-04 11:31 来源:材料工程 作者:admin 阅读:次
由于工作原理和热源类型的不同,目前国内外针对铝合金增材制造技术的工艺方法主要有激光增材制造技术(Laser additive manufacturing,LAM)、电弧增材制造技术(Wire and arc additive manufacturing,WAAM)、电子束增材制造技术(Electron beam additive manufacturing,EBAM)、超声波增材制造技术(Ultrasonic Additive Manufacturing,UAM)和搅拌摩擦焊增材制造技术(Friction Stir Additive Manufacturing,FSAM),本文针对这5种不同的工艺特点进行简单的介绍。
1 铝合金激光增材制造技术
激光增材制造技术是以激光为热源,该技术具有成形精度高、内部缺陷少、力学性能优良的特点。激光增材制造铝合金时多采用铝合金粉末为原料,这就导致了粉末间隙的不确定性从而导致成形件致密度受到影响,并且大多数铝合金对激光的反射率很高,使得激光的利用率较少,目前局限于铸造铝合金或者焊接性较好的铝合金。按照成形原理,铝合金激光增材制造技术主要分为同步金属粉末送给的激光金属直接成形(Laser Metal Direct Forming, LMDF)技术和以粉床铺粉为技术特征的激光选区熔化(Selective Laser Melting, SLM)技术。
SLM制造动图
激光金属直接成形
2 铝合金电弧增材制造技术
电弧增材制造技术是通过同步熔丝逐层累加的方法进行的增材制造技术,由于焊接电弧的特点,主要用于制造超大型较复杂零件的成形,材料利用率高、设备成本低、成形结构大,但是由于热输入量较大,成形件表面质量和成形精度很差,需要进行较多的后续加工。未来针对铝合金电弧增材制造技术来说,如何减小热输入量,提高成形精度和质量是未来研究的重点。
铝合金电弧增材制造成形件
3 铝合金电子束增材制造技术
电子束增材制造技术根据填充材料的不同,主要分为电子束选区熔化技术(Electron Beam Selective Melting,EBSM)和电子束熔丝增材制造技术(Electron Beam Freeform Fabrication,EBFF)。
EBSM技术是在真空环境下以电子束为热源,以金属粉末为成形材料,高速扫描加热,逐层熔化叠加,获得金属零件,不过EBSM技术存在金属粉末材料制备成本较高、易受污染、利用率低、清理工作繁琐、难以制造大尺寸零件等不足之处。
电子束选区熔化技术
EBFF技术与其他增材制造技术一样,通过高能电子束对同步送进的丝材进行熔化,按照CAD模型的特定加工路径进行分层制造,逐层堆积,直至形成致密的金属零件。该工艺具有成形速度快、保护效果好、材料利用率高、能量转换率高等特点。
电子束熔丝增材制造技术
4 铝合金超声波增材制造技术
铝合金超声波增材制造技术采用大功率超声能量,利用铝合金层与层之间振动摩擦产生的热量,促进界面间金属原子相互扩散并形成固态物理冶金结合,从而实现增材制造成形。该技术具有以下优点:
(1)固态成形,温度低,材料内部的残余应力低,结构稳定性好。
(2)制造过程中不产生焊渣、废液、有害气体等污染物,原材料易得,成本低廉。
(3)不需要高温环境,也不会造成合金元素的挥发,且不影响连接的性能。
(4)制造过程中铝箔材表面的氧化膜可以被超声波击碎清除。
(5)可以实现梯度功能材料的制备。
超声波增材制造工艺
铝合金超声波增材制造技术还存在一些不足,由于目前超声波功率的限制,只能对厚度较小的铝箔进行快速成形,未来需要大幅提高超声波换能器的输出功率,实现大厚度和高强度金属板材的增材制造。
5 铝合金搅拌摩擦焊增材制造技术
搅拌摩擦焊增材制造技术是基于搅拌摩擦焊发展起来的一种新型的增材制造方法。铝合金搅拌摩擦焊增材制造是将高速旋转的搅拌头插入铝合金板材后以一定的行进速度沿既定方向运动,在搅拌头与铝合金板材的接触部位产生摩擦热,使铝合金板材塑化软化,塑化金属在搅拌头的旋转作用下填充搅拌针后方的空腔,形成一层增材区之后在上面继续叠加一层基材,并按照相同的路径和增材间距重复上述操作。该技术生产的铝合金成形件热影响区微观组织变化小,残余应力较低,不易变形,无需去除氧化膜,不需要保护气体,成本低。
搅拌摩擦焊增材制造技术示意图
目前,铝合金增材制造技术在军用和民用领域具有广泛的应用前景。铝合金增材制造技术具有复杂精密成形与轻量化设计等显著优势,目前主要发展趋势如下:
(1) 开发铝合金增材制造新方法,进一步探究铝合金增材制造中“工艺-组织-性能”之间的内在联系。阐明铝合金增材制造构件应力形成机理,提出有效控制增材构件残余应力水平及分布的方法,为大型复杂铝合金增材制造构件的制备提供指导。
(2) 揭示铝合金增材制造中微熔池传质、非平衡凝固及冷却过程的物理冶金机理及相变行为,实现铝合金增材制造微观组织控制。通过实验与数值模拟相结合的手段,控制及预测铝合金增材制造温度场分布规律,控制增材热过程。
(3) 进一步开发增材制造+铣削加工(精密加工)一体化设备,提高铝合金增材制造构件的成形精度,实现铝合金构件的精密加工。通过工艺优化及设备升级,彻底消除铝合金增材制造构件气孔缺陷,提高致密度,改善综合力学性能。
(责任编辑:admin)
最新内容
热点内容