陶瓷3D打印:从低迷中被唤醒,推动陶瓷走向工业应用的商业模式(2)
事实上,目前能够生产工程陶瓷的增材制造技术是基于浆料的各种3D打印技术,例如选择性激光烧结(S-SLS);基于浆料的 3D 打印 (S-3DP);粘结剂喷射(BJ),熔融沉积建模(FDM);直接喷墨打印(DIP);立体光刻 (SLA)、光聚合 (DLP) 和 Robocasting(直接墨水书写 DIW)。
研究表明,虽然基于挤压的3D打印工艺 (FDM) 也用于加工经典陶瓷,但其他类型的增材制造工艺(越来越)多的应用在技术陶瓷领域。这些工业领域的技术陶瓷有多种配方可供选择,例如,氧化铝 (Al2O3)、氧化锆、氮化硅、碳化硅以及通常称为“陶瓷钢”的氧化锆 (ZrO2)。
除了最为业界熟知的光固化陶瓷3D打印工艺,最近的发展趋势是Binder Jetting-粘结剂喷射工艺引起了业界的注意,根据3D科学谷的市场研究,目前该工艺的挑战在于机器的粉末床密度应最大化,而所需的液体粘结剂体积应最小化以实现坚固的生坯部件。事实上,Binder Jetting -粘结剂喷射工艺可以在一次构建中生产数百甚至数千个绿色部件。然而,最经常遇到的缺点之一是低生坯强度和低表面光洁度质量。
高耐化学性、高强度和硬度——这种组合可以打开陶瓷以前无法实现的应用之门,并打破进入金属和聚合物已经达到极限的市场。最新的发展趋势是越来越致密的陶瓷产品,正在结合后处理技术,从而改变粘结剂喷射技术所制造的陶瓷产品的强度。国际上USNC通过粘结剂喷射3D打印技术制造核能领域的包覆燃料的基体和(或)包覆层的燃料元件。USNC将粘结剂喷射 3D 打印技术与化学蒸汽渗透工艺相结合,能够更有效地制造反应堆组件,并且更加复杂。
还有一种获得致密的陶瓷产品的3D打印技术是XJET的纳米粒子喷射技术。XJET通过从超薄层中的喷墨喷嘴喷射数千滴陶瓷纳米粒子来制造零件。使用这种基于喷墨和紫外线固化的方法,XJET可以获得超高的陶瓷含量的毛坯件。
目前每种3D打印工艺可能都有其优缺点,但总的来说,遇到的问题是高烧制收缩、低密度和强度,以及与釉料的潜在不相容性。经常发现的其他缺陷包括材料掉落、粘连、分裂和剥落。虽然一些研究人员可能会看到制造定制机器的机会,但创造新材料以及交叉学科的处理工艺是当前可行的另外一种途径。
另外一家企业,Tethon3D 强调了一个可追溯的替代方案:软件工具。有趣的是Tethon3D将自己视为软件公司而不是传统陶瓷材料生产商的公司。聚合物材料科学中的技术改进和寻找改进粉末材料的方法处理正在加速。要知道为什么材料会被更改、升级或淘汰,如此快速地进行创新的带来了非常多的信息交互挑战,所以需要通过软件来系统化的弄清楚如何从实验室批次扩展到生产批次。
最后,规模化生产的关键不仅在于开发新材料,还在于提供正确的最终性能,同时简化流程并确保安全问题。陶瓷 3D 打印的落脚点基本上是从研发开始,最后是原型。陶瓷 3D 打印的产业化应用潜力基于人们对陶瓷工具和小批量零件的兴趣,这些行业包括航空航天和国防、化学工程和牙科的熔模铸造。
在牙科的发展方面,目前Desktop Health获得了FDA 批准永久使用的牙科树脂,直接通过3D打印来制作全瓷牙冠,这一技术进展正在影响全瓷牙科市场。
根据3D科学谷,目前的全瓷冠(如氧化锆)CAM 铣削加工中,陶瓷零件是由预制毛坯在预烧结状态下加工而成的,由于陶瓷固有强度较低,铣削加工中薄边框可能会出现断裂,从而导致设计和制造出来的零件之间出现明显的差异。基于这个原因,薄边框和边缘通常需要在这些区域进行过度的轮廓设计,以防止加工过程中边缘断裂。然而,这也导致这些区域中大量的后处理工作。陶瓷3D打印技术为牙冠修复提供了新的设计自由度,同时有望克服标准陶瓷牙冠加工的技术限制。
基于 Tethon 3D 和 Showa Denko开发的 UV 树脂的高纯度氧化铝 3D 打印。据称这种高纯度氧化铝材料的负载量比其他领先的行业竞争对手高出 25%。由于较高的负载,烧结后 x、y 和 z 方向的收缩小于 10%。
© Tethon 3D
尽管陶瓷增材制造在设计自由度和零件功能方面提供了巨大的潜在改进。因此,缺乏尝试新技术的动力是目前陶瓷 3D 打印的最大障碍。目前可以清楚地看到,随着一些盈利的商业案例的公布,陶瓷行业真的从低迷中被唤醒了。因此,陶瓷增材制造市场最重要的重点是教育行业和最终用户,特别是该技术的优势,鼓励采用并进一步传播这种改变游戏规则的技术。
(责任编辑:admin)