(二)磁体的增材制造:3D打印+拓扑优化=下一代电机(2)
与商业 NO ~6.5% 和 ~3% 的硅钢片相比,L-PBF 基于粉末床的选区激光熔化金属3D打印处理的硅钢显示出相似的磁极化。目前在 AM-增材制造加工的软钢中尚未实现强的优选颗粒取向。
3D打印软磁材料的核心改进是通过气隙设计(平行和垂直于构建方向)实现的。相比之下,对于典型的商业材料,总磁芯损耗要低得多。
降低 AM 软磁材料涡流损耗的策略:(a) 垂直于打印方向的内部气隙 (b) 平行于构建方向的有限气隙 + 金属间化合物层 (ce)与构建方向平行的宽阔气隙
© ScienceDirect
不过,3D科学谷了解到目前为止,3D 打印软磁材料中的过量铁芯损耗幅度和行为尚未得到彻底研究。L-PBF(SLM) 基于粉末床的选区激光熔化金属3D打印制备的硅钢是迄今为止研究最彻底的增材制造软磁钢。当通过优化工艺制备时,可以获得适合电机结构的材料特性:即从高纯度粉末通过L-PBF 3D打印制备的接近完全致密的样品。
根据3D科学谷的市场观察,除了L-PBF(SLM) 基于粉末床的选区激光熔化金属3D打印工艺,Fraunhofer IFAM将金属3D 丝网打印工艺应用到新电力驱动的软磁组件。Fraunhofer IFAM通过3D打印实现的潜在成本降低的一个具体例子是异步电机中的软磁组件。3D科学谷了解到最新的科研进展情况是磁芯损耗可降低 10%,生产中的材料成本可降低 20%。Fraunhofer IFAM通过各种措施,例如使丝网打印过程完全自动化和增加可用的丝网面积,提高了整个过程的生产率。因此,异步电机生产中的二氧化碳排放量可减少约 20%,在片材包装中可减少约 40%。
在电机中,硬磁材料(永磁体)用于在不施加电流的情况下产生磁通量。由于这些材料用于存储磁能,因此宽磁滞回线区域是必不可少的。
© ScienceDirect
传统制造方法(烧结和粘合)生产复杂的网状永磁体具有挑战性。可行的磁体拓扑结构是有限的,因为这些技术涉及模具和压制工具,生坯零件在烧结时也会经历显著的收缩(高达 25% vol)。
与软磁材料类似,已建议使用3D打印-增材制造方法来生产拓扑优化形状的永磁体。根据3D科学谷的了解,稀土永磁材料是第三代永磁材料,主要包括稀土钴永磁材料和钕铁硼永磁材料。前者是稀土元素铈、镨、镧、钕等和钴形成的金属间化合物,主要用于低速转矩电动机、启动电动机、传感器、磁推轴承等的磁系统。后者钕铁硼永磁材料是第三代稀土永磁材料,其剩磁、矫顽力和最大磁能积比前者高,不易碎,有较好的机械性能,合金密度低,有利于磁性元件的轻型化、薄型化、小型和超小型化。
随着3D打印技术进一步打开复合材料的制造空间,在 AM-增材制造硬磁材料的情况下,存储更多磁能的主要障碍仍然是相对较低的硬磁相密度。3D打印磁体通常表现出大的孔隙率和/或粘结剂含量,因此饱和磁化强度低(最大能量密度与 Js2 成正比)。
同时,3D科学谷了解到目前3D打印-增材制造的永磁样品表现出相对较高的矫顽力:在大多数研究中达到 700-800 kJm-1。这可归因于 AM 材料固有的有限颗粒结构和高结构杂质含量。除了 NdFeB,其他硬磁化合物的 3D 打印不太常见,包括 ALNiCo、SmCo和铁氧体磁体的一些实例。
此前,根据3D科学谷的市场观察,ORNL美国橡树岭国家实验室通过将NdFeB稀土粉末与聚合物混合在一起,然后通过熔融挤出头将材料挤压出来,一层一层复合而成产品的形状。复合颗粒中65%体积的材料为各向同性的NdFeB磁粉,35%体积的材料为聚酰胺(尼龙)。
© ORNL
尼龙是一种很常见的、用途广泛的材料,在3D打印行业通常采用的是选择性激光烧结的3D打印方法来制造尼龙产品。而ORNL则采用的是类似与FDM技术,将材料融化挤压出来。
除了不需要模具来制造永磁材料,此外,ORNL发现他们的BAAM打印工艺还比传统制造方法节约30%到50%的材料,因为那些没有被用过的材料可以通过循环被再次使用。
根据3D科学谷,AM增材制造将在电机的设计中引入了全新的设计规则,因为增材制造的成本与批量大小以及产品设计的复杂性并不相关。这意味着电机的电磁和热优化有更多机会:因为磁通路径和导体可以根据设计要求进行三维形状,并且设计中集成了更有效的无源或有源热交换器。
根据3D科学谷的了解,3D打印永磁的技术挑战如下:
- 广泛采用的基于挤压的增材制造方法为实现复杂零件几何形状提供了较少的机会。这是由于3D打印后烧结过程中涉及的显着收缩和机械不稳定性。
- 在打印复杂形状的永磁磁体同时,还必须设计一种磁化过程,以便在材料上赋予必要的三维磁化图案。理想情况下,这个过程将在3D打印过程中原位进行——由于涉及的强磁场,涉及到无数的技术挑战。
总之,新材料的开发及其通过下一代生产方法进行的工业集成对电机的整体性能产生了最显着的影响。材料定义了机器的实际限制,而其他研究领域(控制、设计、优化)——允许针对特定应用的进化发展。
越来越可靠的绝缘材料、更有效的电导体和磁导体、新的永磁合金以及具有成本效益的制造和加工方法,这些因素的配合使最终消费者可以获得更强大和更复杂的电机设计。下一期,3D科学谷将针对3D打印电机中的导电材料进行深入剖析。
(责任编辑:admin)