热门标签-网站地图-注册-登陆-手机版-投稿 3D打印网,中国3D打印行业门户网!
当前位置:主页 > 3D打印方案 > 正文

生物3D打印可降解微型游动装置应用于诊断治疗药物的递送

时间:2019-04-26 09:57 来源:南极熊 作者:中国3D打印网 阅读:
        无线移动微型机器人预期将在通过微创疗法治疗某些难以触及、受限和脆弱的体内部位方面,精确而有效地发挥作用。然而,设计这样一款无线移动微型机器人,需要综合考虑多种因素,包含动力、控制、环境感知、医疗功能和生物降解性等。德国马克斯·普朗克智能系统研究所的Metin Sitti团队研发了一种基于水凝胶、磁动力和控制的,可酶降解的微型游动装置(Figure 1)。该装置可对体内微环境中的病理标志物产生响应,并递送药物,以完成治疗和诊断的任务。研究者拟通过一种双螺旋结构来负载药物和实现磁场作用下的游动。最终,研究者基于3D打印和双光子聚合技术,制备了由甲基丙烯酸明胶和生物功能化超顺磁性氧化铁纳米粒子组成的3D微型游动装置(长度:20 μm,直径:6 μm)。他们发现,在正常生理浓度下,该微型游动装置在可被基质金属蛋白酶-2(MMP-2)在118小时内完全降解为可溶性的无毒物。该微型游动装置通过溶胀来实现对病理浓度的MMP-2的快速响应,从而实现负载药物的释放。该微型游动装置完全降解后,除了可释放负载的治疗诊断学的药物,还可作为释放其它载体,如功能化的纳米颗粒等。
 
Figure 1. Design and 3D fabrication of biodegradable hydrogel microrobotic swimmers.
       为了实现3D微型游动装置的移动,研究者用自制的六线圈电磁装置来构建旋转磁场,并在微型游动装置的长轴上施加计算机控制的磁矩。我们测定了3D微型游动装置的失步频率。该3D微型游动装置中氧化铁纳米颗粒的载入量为6 mg mL-1,在20 mT条件下和1-6 Hz的范围内,每10秒增加一次输入频率,步长为1Hz。结果表明,3D微型游动装置的游动速度随激发频率的增加呈线性增加(Figure 2a)。在1-3 Hz的频率范围内,微型游动装置表现出摆动行为。在3-5 Hz范围内观察到螺旋状运动。微型游动装置的步进频率为6 Hz。通过在5 Hz时驱动微型游动装置的长距离运动轨迹,测定的微型游动装置的平均游动速度(3.36-0.71 μms-1) (Figure 2b)。工作区内的时间恒定的旋转场可实现微型游动装置的导航。通过磁转向控制,可以控制微型游动装置从给定的从A点到达D点(Figure 2c)。

 
Figure 2. Swimming trajectory of a double-helixmicroswimmer under a rotating magnetic field. (A) The step-out frequency of the microswimmerscontaining 6 mg mL-1 iron oxidenanoparticles was found to be around 6 Hz. (B)Image sequence of the hydrogel microswimmer actuated under a rotating magneticfield with the magnetic field strength and excitation frequency being 20 mT and5 Hz, respectively. The average velocity of the microswimmers was found to be3.36 ± 0.71 μm s-1. (C) Magnetic steering control of themicroswimmer. A microswimmer is given the task of reaching each checkpoint fromA to D.
       据报道,在健康个体中的不同组织中,MMP-2以不同浓度存在,但通常范围在140-200 ngmL-1范围内。在高浓度MMP-2条件下(100 μgmL-1),在37℃条件下,微型游动装置可在1小时内完全降解,并且其完全降解时间是初始MMP-2浓度的函数(Figure 3a, b)。与体内更接近浓度条件下(如4 μgmL-1),该微型游动装置完全降解约需要5小时,在另外浓度条件(0.500 μg mL-1),该微型游动装置完全降解约需要67小时,在生理水平下(0.125 μgmL-1),降解时间为118小时。由于不同组织的特异性蛋白酶和其他局部条件存在差异,应根据微型游动装置应用的目标组织,研究该微型游动装置的降解动力学。近年来,基于盐-侵蚀的无机微型游动装置在体内环境中的降解是一种常规途径。本研究提出了一种基于生理环境中酶条件下的降解新途径,并且该过程的降解产物完全无毒(Figure 3c)。
 
       Figure 3. Biodegradation of the hydrogel microswimmers by the MMP-2enzyme. (A) DIC images of adegrading microswimmer array in the presence of 4 μg mL-1 enzyme.Degradation starts with the rapid swell of the microswimmers followed by thecollapse of the entire network. (B) Enzymatic degradation of the microswimmers.At the physiological level, MMP-2 degrades the microswimmers within 118 h.Enzymatic susceptibility introduces a concept of operational lifetime, definedas the time period that microswimmer preserves its original morphology forproper navigation. The operational lifetime is a function of the enzymeconcentration in the microenvironment. Data are presented as mean ± standarddeviation. (C) Live (green) and dead (red) SKBR3 breast cancer cells treatedwith the degradation products of the microswimmers. (D) Quantitative analysisof the acute toxicity induced by the degradation products of the microswimmersin comparison with 5 μg mL-1 iron oxide nanoparticles and untreatedcells. Data are presented as mean ± standard deviation.
       MMP-2酶可以作为一种有价值的生物标志物,用于微型游动装置所感知组织的病理状态和发挥作用。初期,高浓度的MMP-2可作为微型游动装置释放药物的开关。当组织的局部MMP-2浓度升高时,初期微型游动装置的会快速溶胀,并释放药物。由于药物释放速度与溶胀程度有关,所以初始MMP-2酶浓度可以调节微型游动装置的释放动力学。溶胀动力学与初始酶浓度的关系(Figure 4a)。在酶浓度为0.250 μgmL-1时,微型游动装置在加入酶20分钟后开始肿胀。在0.5和1 μgmL-1时,微型游动装置在接触酶时就会开始溶胀。此外,微型游动装置对病理性MMP-2浓度表现出高度的敏感性,而在生理条件下,微型游动装置可保持原来的大小,表明微型游动装置具有MMP-2酶响应行为。水凝胶的降解对于充分利用水凝胶中的药物,具有重要意义。如果材料不降解,将有近一半的药物留在水凝胶网络内,造成利用率低。该研究制备的微型游动装置可完全降解,从而具有较高的药物利用率(Figure 4b, c)。
 
       Figure 4. Enzymatically-controlled drug release from the hydrogelmicroswimmers. (A)Elevated concentrations of MMP-2 cause rapid swelling of the microswimmer body,thereby acting as a switch for accelerated drug release. Data are presented asmean ± standard deviation. (B) At 1 μg mL-1 MMP-2 concentration,accelerated drug release in the first few hours (the pale pink region) isattributed to swelling-mediated mesh size increase. At the end of two days,almost all the payload is released from the degraded microswimmers whereas halfof the content is retained in the non-degraded one, which severely reduces thebioavailability of a significant portion of the drug to be delivered (palegreen region). Data as presented with mean ± standard deviation. (C)Epifluorescence images of microswimmers with loaded dextran-FITC cargo used asa model macromolecular drug equivalent. Enhanced drug bioavailability isevidenced by the enzymatic degradation of the network, which releases itsentire content.
        微型游动装置中水凝胶的降解可进一步释放磁性纳米颗粒,这些纳米颗粒原用来为运动提供磁性力矩。我们设想,用这些局部释放的磁性造影剂对肿瘤细胞进行靶向标记,可以后续评估前期治疗性药物释放的效果。ERBB2受体在乳腺癌细胞株SKBR3中过表达,我们对纳米颗粒表面修饰anti-ErbB 2 抗体,可靶向结合ERBB2受体,从而标记肿瘤细胞。为了便于体外分析,纳米颗粒也同时被荧光基团修饰(Figure 5a)。与未修饰的纳米颗粒类似,抗体标记的纳米颗粒仍可嵌入到微型游动装置内(Figure 5b)。改性的纳米粒子的加入不会影响微型游动装置的整体游动性能。我们研究了通过MMP-2酶介导的微型游动装置体内降解后释放的磁性纳米颗粒的细胞标记性能。微型游动装置降解后,释放到环境中的功能性纳米颗粒可标记39.3%的SKBR3细胞,用荧光活化细胞分选法检测(Figure 5c和S 14)。另一方面,未经表面修饰的纳米颗粒也可标记约9.5%的细胞,这表明细胞与纳米颗粒之间也存在着一定非特异性相互作用(Figure 5d)。
 
       Figure 5. Targeted cell labeling with the magnetic nanoparticles releasedfrom collapsed microswimmers towards diagnostic in vivo imaging. (A) The design of superparamagnetic iron oxidenanoparticles of 50 nm size functionalized with a fluorophore and anti-ErbB 2antibody for targeted labeling of ERBB2-overexpressing breast cancer SKBR3cells. (B) Epifluorescence image of microswimmers embedded with the nanoparticles.(C) Targeted labeling of SKBR3 with the anti-ErbB 2 modified magneticnanoparticles released upon the MMP-2-mediated degradation of themicroswimmers. In the absence of anti-ErbB 2, the nanoparticles fail to targetSKBR3 cells.
本研究是由德国马克斯·普朗克智能系统研究所的MetinSitti团队完成,并于2019年3月在线发表于ACS Nano。
    论文信息:Hakan Ceylan, Immihan Ceren Yasa, Oncay Yasa, Ahmet Fatih Tabak, Joshua Giltinan, andMetin Sitti*. 3D-Printed Biodegradable Microswimmer for Theranostic CargoDelivery and Release. ACS Nano. 13(3):3353-3362.

(责任编辑:admin)

weixin
评论
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片